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Bayesian Ability Estimation via 3PL with Partially Known Item Parameters

ROBERT K. TSUTAKAWA AND JANE JOHNSON

Abstract

The conventional method of measuring ability, which is based on items with true

parameters assumed to have values estimated by a pretest, is compared to a Bayesian

method which deals with the uncertainties of such items. Computational expressions are

* presented for approximating the posterior mean and variance of ability under the

three-parameter logistic (3PL) model. A 1987 ACT math test is used to demonstrate that

the standard practice of using maximum likelihood or empirical Bayes techniques may

seriously underestimate the uncertainty in the estimated ability when the pretest sample is

only moderately large.

Key Words: ability estimation; Bayesian IRT; calibration; pretest; three-parameter

logistic.
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INTRODUCTION

" A standard practice in mental testing is to score individuals using the responses to a

set of test items which have previously been calibrated. When latent trait models are

employed, the calibration involves estimating parameters of the model using a moderately

large sample. The estimated parameters are then assumed to be the true values when the

scoring is performed.

Even when the assumed model is correct, there are two sources of errors in this

process. One is due to the responses of the individuals being scored and the other is due to

the error in the calibration. Ignoring the second source could lead to inferential errors,

particularly when the calibrating sample is not large. In many areas of testing large

samples may not be readily available for calibration. Moreover, disclosure laws commonly

require public dissemination of tests, making it necessary to have more items while the pool

from which to draw the calibrating sample is limited. \

-- This paper deals with the problem of estimating ability when there is uncertainty

concerning the item parameters due to the limited size of the calibrating sample. Because

of the sequential nature of first calibrat 1ig the test and then using it on the target

population, the Bayesian paradigm for statistical inference is particularly attractive. This

paper discusses how the uncertainty in the item parameters may be incorporated into the

estimation and uncertainty of the abilities being measured. -

The main idea will be demonstrated in terms of the three-parameter logistic model
(3PL) which was introduced by Birnbaum (1968). The model specified that the probability

of a correct response by an individual with real valued ability 0 to a given item has the

for:-

"-* p (o = c + 1+exp{-a(b---0)' (1)

where = (a,b,c) is an unknown item parameter, subject to a>O, --w<b<o, and O<c<l. It
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will be assumed that a test consisting of K items has already been given to a calibrating

sample of n individuals and that the posterior mean or mode of the item parameters is

already available. (See Mislevy & Bock, 1984, or Tsutakawa, 1988, for algorithms to

compute the posterior mode.)

The uncertainty in the calibrated item parameters will be summarized in terms of

the posterior covariance matrix, which is approximated by the inverse Hessian of the

negative log posterior evaluated at the mode. The mode and covariance matrix will then

be used in the approximation of the posterior mean and variance of ability presented by

Tsutakawa & Soltys (1988) for the case of the two-parameter logistic model (2PL), a

limiting case of 3PL when c=O in (1).

The method will be illustrated on data from a 1987 American College Testing

Program (ACT) math test. The results will be compared with the more conventional

approaches using maximum likelihood as implemented by LOGIST (Wingersky, Barton, &

Lord, 1982) and empirical Bayes based on item parameters estimated by marginal

maximum likelihood (Bock & Aitken, 1981, and Tsutakawa, 1988). The main conclusion of

the paper is that when there is uncertainty in the item parameter, both maximum

likelihood and empirical Bayes underestimate the variance of ability and therefore produce

interval estimates which ale too narrow and misleading.

General Setup and Alternative Solutions

Consider a K item test where the items are scored x3=0 or 1 according as the answer

to the jth item is incorrect or correct, j=1,...,K. Assume local independence so that the

probability of the response vector x = (xl,...,xK) for an individual with ability 0 is

K x. 1-x.
n.CN9) =K pt J(O){ 1-p (0 )l -,

Avi,. and/or
(6' Dist Special

, \ .1111.U I I II I l I0 t 1
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where = (I,..., K) is the set of item parameters for the K items.

For calibration, assume there are n individuals with abilities 0 = (01,..,On) sampled

from a N(0,1) distribution. If Yi = (Yil'""YiK) is the response vector of the ith individual

and y = (yl,...,yn) the response matrix of the n individuals, the joint distribution of (y,O)

is given by

n
p(y,M ) = iP(Yi i)(0i) ,  (3)

where pC(Yil0i) is defined by (2) and ¢ is the N(0,1) pdf. The marginal distribution of y

- _then has probability function

= n
P(Ys) i f 0(0i)p y~iO)dOi. (4)

If p( ) is a prior pdf of C, the posterior of C is simply

~p(Cly) a P(C)Py] ). (5)

The main problem to be addressed in this paper is the estimation of the ability 0 of

a new individual with response vector x, when we are given y, the data from the

calibration.

When C is known, a standard method of estimating 0 is by maximum likelihood
0

(ML), i.e., finding the value of 0 which maximizes the likelihood function 9(OIC) = p(x10).
In this case the variance of the ML estimator 0 may be approximated by the inverse of the

test information function, which is given for 3PL (Lord, 1980, p. 73) by
a

0o
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2K a (1-c j)
1(0)= ' , (6)

j=1 (cj+e)(l+e-zJ) 2

where zj = aj(9--bj) and (aj, bj, cj) = j. In the absence of known , a common practice is

to replace hy 5 a component of the joint ML estimate ( j, 0j) based on the likelihood

function

nZ(,O i~p'(YiA )  (7)

and to estimate the unknown new 0 by the value of 0 which maximizes the conditional

likelihood function /(OJV = p. (xjO).

When C is known, the standard Bayesian method (Birnbaum, 1969) of estimating 0

is in terms of posterior mean

9 = E(O1x,) = J9p(01x, )d0, (8)

where, by Bayes theorem,

S p(OIx,) & 1(xI ) C) (9)

. p(x10) 0(0))d0

In this case the measure of uncertainty is the posterior variance,

a 2 - V(0[x,) -- (0-0) 2 p(9lx,C)d9. (10)

(See Lord (1986) for an interesting comparison of the posterior mean and ML estimate of 0

when is known.)

-6
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In the absence of a known , an empirical Bayes (EB) solution would be to replace

in (8) and (10) by the marginal maximum likelihood estimate, M' based on (4). This type

of approach has been criticized by Deeley & Lindley (1981) for its failure to account for the

error in CM.

When C is unknown, the Bayesian solution is through the posterior distribution of 0

given the data z = (x,y). The pdf of this distribution is given by

p(Oz) = jp(Ojz, )p( Jz)d, (11)

r',4

where, from the conditional independence if x and y given C,

p(CIz) = p(xI )p( jY)/p(x1Y) (12)

and

p(Olz,) = p (xl)¢(9)/p(x). (13)

Substituting (12) and (13) into (11) we have

p(OIz) = p- . p,(x0)p(C(y)dC, (14)

where we can now see how p(CIy) serves as the prior for C subsequent to the calibration.

The posterior mean and variance of 0 can be similarly expressed as

IL = JE(Ojx,C)p(CIz)dC (15)

'p and

a2 = f E{(---) 2Ix,C)p(CIz)dC. (16)

05
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These expressions are difficult to work with numerically. Practical approximations are

presented in the next section.

It is instructive to consider a decomposition of the posterior variance (16) in order

to identify the sources of variability. Using a well known identity (e.g. DeGroot, 1986, p.

225) we have

21 JV(0ICAz)P(z)d, + {E(0IC,z) - E(o0z)}p( lz)dC

- fv(OICx)p(Cjz)dC + f{E(jIx) - E(01z)} 2 p( Jz)d6, (17)

where we have used the fact that (Ox) and y are conditionally independent given C. Thus

the posterior variance of 0 may be interpreted as the average conditional posterior variance

of 0 given C plus the variance of the conditional posterior expectation of 0 given C with

respect to the posterior uncertainty in C. The empirical Bayes variance approximates the

first integral in (17) with (10) by replacing C with CM, but ignores the second. The second

term is important when C is ill-determined after observing z.

*Bayesian Approximation

The approximation used to compute the posterior mean and variance of 0 under the

2PL model by Tsutakawa & Soltys can be modified for 3PL. The approximation is a

*special case of Lindley's (1980) approximation to the posterior mean of a function of

hyperparameters.

Suppose w(C) is a function of the item parameter C whose expectation we wish to

evaluate. Let w and wrs denote the value of w(C) and its second partial derivatives

-N.., evaluated at the posterior mode C. Let rrs denote the elements of the approximate

posterior covariance matrix of C, where the approximation used is the inverse Hessian of
0
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the negative log posterior evaluated at .. The approximation is then given by

w = w 4- . (18)

When the posterior of C is norm.A, this is Lindley's approximation. For a heuristic

justification of -w and discussion on other Bayesian approximations see Tsutakawa&

Soltys.

To approximate the posterior mean of 0, use w(C) = E(0Ix,C) in (18). If the

approximate mean has value m, the posterior variance of 0 is similarly computed by using

(18) again with w(C) = E{(0-m) 2x,}.
0

To apply this approximation in practice, we recommend replacing p(Clz) by p(Cly)

in (15) and (16). This substitution will have a negligible effect since z contains data on

only one additional individual. Moreover updating p(Clz) for each new individual is not

only costly but would change the scoring criterion from one person to the next so that two

individuals with the same response x could have different estimates of 0. This substitution

is obviously not necessary when the 0 being estimated is for an individual in the calibration

V sample. Computational expression for w, wrs and rrs needed for 3PL are summarized in

the Appendices.

Numerical Results

The ability estimation will now be demonstrated using a sample of n=400 for
calibration and an additional sample of 100 to estimate 100 0. Both samples were drawn

from a larger sample of 1987 ACT math test results where K=40. Due to the fair number

of omitted responses, the samples were selected after deleting examinees who omitted the

-. last item or more than 10% of the items.

The computation of the posterior mode is based on the EM algorithm (Dempster,

Laird & Rubin, 1976) as implemented in Tsutakawa (1988) for the case in which the prior
0!



0~ 9

of is derived from a, Dirichlet distribution based on data from a similar test given in 1981.
This prior assigns a joint distribution to the probability of correct responses at three values

of 0. When properly constrained, It induces a distribution on C. Although we use the same

prior as Tsutakawa (1988), the data used here has been resampled from the same 1987 test

after making the deletions mentioned above. We also use the parameterization

4. 0 = (b.,c.,d.), where d. = log a., j=I,...,K, in order to enhance the asymptotic normality

of the posterior distribution of , a condition which would make our approximation closer

to Lindley's.

Table 1 lists the posterior modes of the item parameters, together with the

approximate standard deviations an,: within item correlations. The correlations between

items are used in the computation but not listed since they are quite numerous. These

results were used to compute the means and standard deviations of 0, for the 100

individuals, which are plotted in Figure 1. The standard deviations are lowest when the

estimated 0 are close to 0.25 and increase quite rapidly as the estimated 0 departs from this

central location. This general pattern is to be expected since tests of this type are

generally designed to assess individuals whose abilities are close to the average.

In order to compare these results to those under ML and EB, the corresponding

estimates of 0 and their standard deviations were computed using the methods outlined

above. Figure 1, which gives a plot of the values computed, shows that the standard

deviations under EB tend to be considerably smaller than those under Bayes. For 0 > .5,

" 'the standard deviations under ML also tend to be considerably smaller than those under

Bayes, but for 0 < .5, the two procedures have comparable standard deviations on the

average.

In Figures 2 and 3 the ML aihd EB estimates of 9 are plotted against the posterior

-,eans. There is a general agreement over the interval from about -1.2 to 0. However the

posterior means in the interval from 0 to 2 tend to be larger than the other two estimates.

For the more extreme values (which are listed but not plotted in Figure 2), there is a

..
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tendency for the Bayes estimate to be pulled more towards the origin relative to ML. In

fact there was one individual having a perfect score whose 0 cannot be computed under

IML.

The inferential effect that the different procedures have on the estimates and their

standard deviations may be illustrated in terms of interval estimates, defined here as the

estimate of 0 ± 2 standard deviations. The end points of the interval estimates obtained by

ML and EB are plotted against the end points of the Bayesian or posterior intervals in

Figures 4 and 5 for the first 50 of the 100 examinees. It is quite apparent from these plots

- that both ML and EB produce substantially shorter intervals than the Bayes intervals in

most cases. Since the intervals tend to become quite wide when the estimaed 0 departs0

from the origin, the intervals were converted to percentile intervals, with a percentile

defined by 100 4(O) where is the N(0,1) cdf. The corresponding plots, shown in Figures 6

and 7, further accent the narrower width of the ML and EB intervals.

In order to explain the differences observed in these graphs it is important to

consider the differences in the assumptions and information used. The Bayes and EB

methods both assume a N(0,1) prior on 0. Thus the observed difference is not due to the

prior on 0 but the use or nonuse of certain information from the calibration phase. Under

EB, the unknown C is replaced by its estimate, without accounting for the error in the

estimate, resulting in a deflated standard deviation. On the other hand ML makes no

distributional assumption about 0, suggesting that its intervals should be wider than Bayes

(Lord, 1986). However the fact that the estimated C is treated as the true value again

deflates the standard deviation, but not to the extent of EB.

'V

Discussion

The main conclusion of this paper is that tests based on calibrations which produce

imprecise estimates of item parameters and ignore this imprecision can lead to serious

inferential errors. The discrepancy found here between the Bayes and conventional

-.

,0



¢ 11
.47

methods for 3PL is more striking than that reported earlier by Tsutakawa & Soltys (1988)

for 2PL.

', In large scale testing the sample size for calibration is typically substantially larger

than the 400 used here. However, increasing the size of the calibrating sample alone will

not increase the precision of the ability estimates. The major component of the

uncertainty, whether the inference is Bayesian or frequentist, is the randomness of the

individual response pattern x for a given 0 and C. This uncertainty cannot be reduced

without increasing the number of items in the test.

There is a need for better approximations which are not only more accurate but

simple enough for routine use. Bayesian approximations, which are adaptable to modern

computer technology are only beginning to appear and give promise for widespread

Bayesian applications in testing.

For inferential purposes it is important to distinguish the sampling variance of the

ability estimator for individuals with ability 0 and the posterior variance of 0 for an

individual with response x. The former may be interpreted as the variance before

observing x among these with ability 0 and the latter as the (subjective) posterior variance

after observing x. Since 0 is unknown, the former is unknown, but it is common practice to

estimate it by replacing 0 with its maximum likelihood estimate based on x. Since this

estimate is unreliable so is this variance estimate. On the other hand the posterior

variance is a measure of uncertainty we have about a particular individaal's 0 after

observing x. The subjectivity of this measure enters only through the choice of the prior

distribution for the item parameters. This subjectivity should not be a controversial issue

when the choice of the prior is based on past tests, as in the illustration used here. If one is

interested in the probable values of 0, after x has been realized, the Bayesian approach is

-"-." the logical choice.
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Appendix A: ExPrIcssions for Computing the Empirical Information Matrix

To simplify the notation let -= Jl ( P' j2 i = b iCj ~
y..- 1-y..-

and P..j -p 'J(O) {l-p (O)} 'j.

Now define

p2og

g5t(ij)O) a =4 jt t

and g~iiO

h stO'j 0){ 092 Iogp. i9 ijdpij

for i =1,...,n; j =1,...,K; s, t =1,2,3. We then have

h st(i'j,9) = g5 t(i'jO) + g5(i'j'0)gt(i'jO). 19

Define, for notational convenience only,

zoj exp (dj) ( OLbj),

~Oj = {I. + x(zj1,

A Oj {I=-cep-o~-

4: 1

*~ 17j = cj + exp(zj)} -1

0 Then the first two derivatives of log P~ may be expressed by

;. .)s g1 (i'jO)=

2''ijqoj -'(j-) + j/c-)

g3(i1j,O)

g1 1(i'jO) - x(d)(jiAO O-O 0)

912 (il,) = yijexp(d)1ojAoj,

0
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g13 (ilO) - - ex~j(j~joj + oepd)0jlj-yi b

2 2g22(ilo) -[iqj+(-i)(j

9 2 3 (ilo) -=yjAOqi

g33(il,) = ~ jyj~,7jO~Oj + zoj(yijA oj-oj)-

Then h s(ij,O) may be expressed in terms of the expressions for g, and gst through

equation (19).

Now define the conditional posterior expectations (given C) of these functions by

g5(-j =' J0 g5(ij, O)p( Olyi,C)dO,

lis-o F hst(i'iO)p(OIYi~9dO,

ust(i,j,j') = j'0 gs(ij,O)gt(ij',8)p( Ojyi,C)dO,

*for i = 1,...,n; j,j' = 1,...,K; and s,t = 1,2,3, where p(li6= C(iO)1y)Cthe

posterior pdf of Oi given yi = yI.. iK
5 Then, finally, the first and second partial derivatives of the loglikelihood function

L(C) =log p(yj C) are given by

n
* i/Ocs i=l-1j

and
n

for i=l,...,n; j,jt=1....,K; s,t 1,2,3. The empirical information matrix is the negative of

0
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the 3Kx3K 2nd derivative matrix, i.e.,

I(-) - o(C)/Ois o= t].

To complete the expressions for the Hessian of the negative log posterior, we must

add to I(C) the second partials of the negative log prior, expressions for which are

summarized in Tsutakawa (1988). A quadrature method for the required numerical

integration is given in Tsutakawa (1984).

0=

0,ji

S..

.1-."
1: -

0:

6



1.5

Appendix B: Expressions for Computing the Second Derivatives of w( )

The function w( ) used in the approximations have the form,

whereW(6) = Jf(Oi)p(90ijyi,t)dOiI

weef(0 1) = Oifor the posterior mean and f(Oi) = (Oi--m) 2 for the posterior variance. By'
interchanging the order of differentiation and integration, the required second derivatives

2 of w(t) evaluated at C have the form

Wst(i,j') = y,1, P td,

for j, jr = 1,...,K and s, t = 1,2,3. (Additional subscripts have been introduced here in

order to identify the nesting of the item parameters within items.)

Upon evaluating the second derivatives of p(Oilyi, ), the computational expressions

reduce to

w st(j,j) = E{f( 01)hst(i,j)} - t(i~j)Ejf(Oi)gs(ij,O1 )} - g5(ij)E{f(0i)gt(ij,O) }
+ E{f(8.)}{2g(i,j)gt(i,j)-Eist(i,j)}

and, for j,
wst(j,j') E{f(9-)g 3 (ij,Oi)gt(ij',91 )} - gt(ij')E{f(O-)gs(i,j) - g5(i'j)Ejf(O-)gt(i~j' 9

+ E If( 0 1}{29S ki,j)gt (i~j Ut(i)j,

for j, j' =1,...,K and s, t = 1,2,3, where E{} denotes expectation with respect to the

6 posterior pdf p(O~iyi,c).
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18 TABLE 1

Summary of Posterior Distribution of Item Parameters

Posterior Mean Posterior SD Posterior Correlation

Item
Item Score b c d b c d bc bd cd

1 327 -1.43 0.01 0.10 0.87 0.53 0.21 0.97 0.81 0.69
2 325 -0.02 0.56 0.69 0.31 0.09 0.28 0.89 0.77 0.69
3 304 -0.77 0.12 0.32 0.53 0.28 0.22 0.96 0.86 0.78
4 304 -0.05 0.41 1.42 0.11 0.06 0.23 0.67 0.62 0.47
5 298 -0.17 0.36 0.62 0.31 0.13 0.25 0.92 0.82 0.76
6 294 -0.61 0.05 0.63 0.30 0.19 0.20 0.94 0.85 0.78
7 279 0.07 0.35 0.96 0.14 0.07 0.20 0.77 0.61 0.53
8 276 -0.34 0.13 0.57 0.27 0.14 0.21 0.93 0.82 0.76
9 274 0.22 0.39 1.16 0.12 0.05 0.22 0.69 0.55 0.49

10 274 -0.31 0.15 0.48 0.31 0.16 0.21 0.94 0.82 0.77
- 11 265 -0.49 0.00 0.39 0.34 0.19 0.20 0.95 0.84 0.79

* 12 254 0.74 0.47 0.74 0.17 0.05 0.27 0.71 0.38 0.58
13 253 0.13 0.26 0.57 0.19 0.08 0.20 0.85 0.64 0.63
14 245 0.18 0.24 0.52 0.23 0.10 0.24 0.90 0.74 0.75
15 240 0.27 0.25 0.29 0.33 0.12 0.27 0.93 0.76 0.78
16 234 0.45 0.31 0.98 0.12 0.05 0.22 0.70 0.50 0.56
17 225 0.13 0.11 0.91 0.11 0.05 0.16 0.72 0.55 0.58
18 224 0.12 0.10 1.01 0.11 0.06 0.18 0.73 0.61 0.65
19 216 0.55 0.28 0.87 0.13 0.06 0.23 0.74 0.51 0.63
20 215 0.42 0.22 0.77 0.14 0.06 0.21 0.77 0.56 0.65
21 213 0.42 0.22 0.98 0.11 0.05 0.21 0.70 0.51 0.61
22 211 0.44 0.21 0.65 0.16 0.07 0.22 0.82 0.58 0.70
23 205 0.37 0.16 1.07 0.09 0.04 0.18 0.64 0.42 0.54
24 195 0.70 0.24 0.61 0.15 0.06 0.25 0.75 0.44 0.69
25 195 0.33 0.09 0.60 0.14 0.06 0.18 0.79 0.55 0.68
26 189 1.03 0.28 0.39 0.20 0.06 0.28 0.68 0.25 0.69
27 187 0.46 0.11 0.49 0.15 0.07 0.20 0.81 0.53 0.70
28 184 0.69 0.21 0.85 0.11 0.05 0.22 0.63 0.32 0.59
29 180 0.59 0.16 0.76 0.12 0.05 0.21 0.71 0.42 0.66

* 30 178 0.83 0.23 0.73 0.13 0.05 0.23 0.62 0.23 0.61
31 174 0.43 0.00 -0.12 0.56 0.21 0.31 0.97 0.83 0.88
32 172 0.52 0.10 0.80 0.10 0.05 0.18 0.66 0.39 0.64
33 168 1.05 0.29 1.24 0.09 0.03 0.24 0.31 -0.110.33
34 166 0.60 0.12 1.05 0.08 0.03 0.16 0.44 0.08 0.36
35 160 0.99 0.21 0.67 0.14 0.06 0.30 0.63 0.32 0.77
36 151 1.87 0.30 0.41 0.30 0.04 0.35 0.01 -0.650.52
37 149 0.98 0.20 0.99 0.10 0.03 0.23 0.41 -0.040.50
38 147 0.68 0.10 1.18 0.07 0.03 0.16 0.32 -0.030.29
39 144 0.79 0.12 0.93 0.09 0.03 0.18 0.44 -0.010.47
40 133 0.88 0.09 0.72 0.10 0.04 0.20 0.46 0.00 0.61
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